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Structural alloys used in high-temperature applications exhibit complex thermo- 
mechanical behavior that is time-dependent and hereditary, Recent attention is being 
focused on metal-matrix composite materials for aerospace applications that, at high 
temperature, exhibit all the complexities of conventional alloys (e.g., creep, relax- 
ation, recovery, rate sensitivity) and, in addition, exhibit further complexities 
because of their strong anisotropy. 

Here, a continuum theory is presented for representing the high-temperature, 
time-dependent, hereditary deformation behavior of metallic composites that can be 
idealized as pseudohomogeneous continua with locally definable directional character- 
istics. Homogenization of textured materials (molecular, granular, fibrous) and 
applicability of continuum mechanics in structural applications depends on character- 
istic body dimensions, the severity of gradients (stress, temperature, etc.) in the 
structure and on the relative size of the internal structure (cell size) of the 
material. Examination reveals that the appropriate conditions are met in a signifi- 
cantly large class of anticipated aerospace applications of metallic composites to 
justify research into the formulation of continuum-based theories. 

The point of view taken here is that the composite is a material in its own 
right, with its own properties that can be measured and specified for the composite 
as a whole. Experiments for this purpose are outlined in detail in reference 1. 
This viewpoint is aimed at satisfying the structural analyst or design engineer who 
needs reasonably simple methods of structural analysis to predict deformation 
behavior in complex multiaxial situations, particularly at high temperature where 
material response is enormously complex. Indeed, the prediction of component 
lifetime depends critically on the accurate prediction of deformation behavior. 

THEORETICAL DEVELOPMENT 

As in references 1 and 2 ,  the starting point here is the assumed existence of a 
dissipation potential function Q for the composite material; that is, 

in which Oij denotes the components of (Cauchy) stress, the components of a 
tensorial internal state variable (internal stress), didj 
directional tensor, and T the temperature. The symmetric tensor didj is formed 
by a self product of the unit vector di denoting the local fiber direction. As 
pointed out in reference 3 ,  account can be taken of more than a single family of 

t e components of a 
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fibers inherent to the continuum element. An extension of the present work to two 
families of fibers has been considered by the author but is not presented here. The 
function is taken to depend on temperature, however the present emphasis is on 
isothermal deformation at high homologous temperature so that the temperature depend- 
ence will not be shown explicitly hereafter. 
homologous temperature justifies ignoring extensive cyclic hardening. Extension to a 
full nonisothermal theory is in progress. 

The presumption of constant high 

A simple thermodynamic formalism based on reasonable assumptions is shown in 
reference 4 to support the existence of a dissipation potential for a homogeneous 
(one-constituent) solid. Here, this formalism is assumed to be extendable to a two- 
constituent (fiber/matrix), psuedohomogeneous composite material. The thermodynamic 
structure leads to the generalized normality conditions, 

an 
& = -  
ij au ij 

and 

-a ij an - 
h aa, ( 3 )  

in which ~ i j  denotes the components of the rate of (small) strain and h is a 
scalar function of the internal stress Ctij. The orientation tensor didj is taken 
to be constant under small deformations, otherwise an evolutionary equation would 
need to be specified for it as well. 

As in references 1, 2, and 5, is taken to depend on the state variables 
through the scalar functions F and G; that is, 

n = a(F,G) 

where 

( 4 )  

G(aij, didj) (7) 

The term Cij is the effective stress and Sij and aij are the deviatoric parts 
of uij and aij, respectively. 

The functions F and G each depend on two symmetric second-order tensors. 
Form invariance (objectivity) of F and G, and hence of a,  requires that they 
depend only on certain invariants and invariant products of their respective 
tensorial arguments (integrity basis - ref. 6 ) .  A subset of these invariants for F 
(i.e., F(11,12,13)) is taken as follows: 

1 
4 3  I1 = J2 - I + -  I 
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I 3  1 2 = 1 -  

2 
I 3  = ( I o )  

( 9 )  

(10) 

where 

- -  - I 1. . E  J 2  2 ij ji 

1 J jk ki I = d.d.l. 1 

Io = d.d.1.. 
1 J 31 

( 1 3 )  

The invariant corresponds to the square of the maximum effective shear stress on 
planes containing the fibers and in a direction normal to them (transverse shear), I 2  
correspvnds to the square of the maximum effective shear stress on planes containing 
the fibers but directed along the fibers (longitudinal shear) and I 3  is the square 
of the effective normal stress in the foca1,fiber diryction. 
iants is chosen for G ,  denoted by 11 , I 2  , and I 3  , and i s  obtained by replacing 
1ij by aij in equations (11) to ( 1 3 ) .  

11 

A similar set of invar- 

The function F ( 1 1 , 1 2 , 1 3 )  is chosen to be linear in 11 ,  12 ,  I 3  (quadratic in 
stress) as 

F =($ + 2 I 2  + 7 9 1 9  - 1 

KT KL 4yL 

where KT, KL, and YL correspond physically to the (threshold) strengths of the 
composite element in transverse shear, longitudinal shear, and longitudinal tension 
(compression), respectively. Defining 

and 

yL 

yT 
w = -  (16) 

where YT relates to the strength in transverse tension (compression), F becomes 

r 1 

131 - 1 rl 4(4w2 - 1) 
1 9 

F = + + - l  KT + 
Experiments for determining KT, r l ,  and w using thin-walled tubular specimens 
with varying fiber orientations are outlined in reference 1. 
of a Bingham-Prager threshold function with 
shear stress in transverse shear. 

Here, F plays the role 
KT (as indicated earlier) a threshold 

If no threshold exists - that is, if inelastic 
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deformation occurs for applied stress however small - the function F can be taken 
homogeneous in stress with KT playing the role of a "drag" stress as identified in 
other theoretical developments. 

It is noted that with rl = w = 1 (and with KT = KL = K) F reduces to 

F = - -  J2 1 
K2 

as taken in reference 5 for an isotropic solid. 

Similarly, the function G is taken as 

9 
2 

rl 4(4w - 1) 
(19) 

Using equations (4) to (19) in equations (1) to (31, taking h in equation (3) 
as h(G) and 

an f ( F )  = - aF 

and 

results in a flow law 

E ij = f(F)Tij 

and an evolutionary law 

where 

i (25) 
1 

B = a - 6[dkdiajk + djdkaki - 2I'd.d.I - 2 (Ii(3d.d - & . . I  
ij ij O l J  1 j 1~ 

where 
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40" - 1 

Once again, with = w = 1 (5  = < = 0) equations ( 2 2 )  and ( 2 3 )  reduce to the flow 
and evolutionary laws of reference 5 for an isotropic solid. 

Equations (17), (19), ( 2 2 ) ,  and ( 2 3 ) ,  with the accompanying definitions, provide 
an anisotropic representation that accounts for observed monotonic behavioral fea- 
tures such as strain-rate dependent plasticity, primary creep, and secondary creep. 
Application to a particular composite requires specification of the parameters q 
and w, characterizing the anisotropy; KT, the strength in transverse shear; and the 
functions f(F), h(G), and y(G) (ref. 1). 

CONSIDERATIONS FOR STRESS REVERSALS AND REDUCTIONS 

Reversals and reductions of stress following inelastic deformation of metallic 
alloys are known to.?nitiate micromechanistic processes that are not present, or at 
least not controlling, under monotonic conditions. For example, forward stressing 
may result in hardening through pile-ups of gliding dislocations against obstacles 
(for example, "forest" dislocations threading slip planes that accumulate in front 
of moving dislocations - ref. 7). Upon abrupt reversal of stress the immobilized 
dislocations become remobilized, finding fewer obstacles in their paths as they begin 
to move backward along their slip planes. This constitutes a relatively rapid micro- 
structural rearrangement; that is, an abrupt change in mobile dislocation density, 
precipitated by a reversal of stress (dynamic recovery). 
more macroscopic scale, this may correspond closely to the very rapid changes in the 
"stored energy of cold work" observed upon stress reversal by Halford (ref. 8 ) .  

Interpreted on a somewhat 

Reductions in stress at elevated temperature are also known to cause micro- 
structural rearrangements in time (thermal recovery) through diffusion-controlled 
mechanisms such as climb and annihilation of dislocations, even in the absence of 
significant inelastic strain recovery. Although, at high temperature, these 
mechanisms always may be present and contribute as competing mechanisms under steady- 
state conditions, they may become the controlling mechanisms, at least for some time, 
following stress reductions. 

Phenomenological representations in which internal state variables (e.g. Uij) 
serve as macroscopic measures of the current microstructure must reflect these 
sometimes abrupt internal changes that occur upon stress reversals and the more 
gradual changes that occur under reductions of stress. The theory for isotropic 
metals presented in reference 5 accounts for these behaviors by allowing analytically 
different regions of the state space: 
governed by different analytical forms for the evolution of the internal state (Ui 
Such idealizations have strong precedent in classical continuum plasticity. Detai s 
of the representation are given in reference 5. Here, it is assumed that the ideali- 
zation can be extended to the anisotropic behavior of metallic composites. 

that is, regions of the space (Uij, aij) 

1" 
Guided by reference 5, the crucial regions of the state space are bounded by 
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Accordingly, the flow and evolutionary equations (22) and (23) are modified, 
respectively, as 

E = p(sij r . . )  f(F) rij 
ij 3 1  

A .  A 

a = h(G) - y(G)wij ij 

where 
G A = (G - GO)P(s..W..) + Go 

13 3 1  

P(x) = 1 x > o  

P(x) = 0 X L O  

l and 
CI. 

f (F) F > O  

0 F L O  
f(F) = 

(29) 

(30) 

(33 1 

A complete statement of the isothermal theory is thus given by equations (17), 
(lg), ( 2 9 ) ,  and (30), with the accompanying definitions. It is again noted that for 
q = w = 1 these equations reduce to those of reference 5 that have been applied 
successfully in representing the cyclic thermomechanical response of isotropic solids 
and structures (refs. 5 and 9 to 11). 

IMPLEMENTATION IN STRUCTURAL ANALYSIS CODES 

The present theory has been implemented into the commercial finite element code 
MARC by Dr. A.K. Arya (ref. 11). Several trial calculations have been made under 
uniaxial conditions using material functions and parameters that approximate a 
tungsten/copper composite material (ref. 3). A transversely isotropic continuum 
elasticity theory (ref. 12) has been used in conjunction with the present visco- 
plastic theory. The results of the calculations (ref. 11) show the expected 
responses of rate-dependent plasticity, creep, and relaxation as well as appropriate 
anisotropic features. 

The theory has also been implemented into a research-oriented code NFAP 
developed by Prof. T.Y. Chang together with his colleagues and students at the 
University of Akron. Several of the uniaxial predictions of MARC have been 
successfully duplicated using NFAP and predictions of structural response - for 
example, composite beams, plates, and shells - are in progress. 

I 
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